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In this article, we considered the steady response of an infinite unbroken floating ice 
sheet to the uniform motion of a rectangular load. It is assumed that the ice sheet is 
supported below by water of finite uniform depth. The ice displacement is expressed as 
a Fourier integral and the method of residues is combined with a numerical quadrature 
scheme to calculate the displacement of the surface. In addition, asymptotic estimates 
of the displacement are given for the far field and for the case where the aspect ratio 
of the load is large. The far-field approximation provides a good description of the 
surface displacement at distances greater than about one or two wavelengths away 
from the load. The behaviour of the steady solution at the two critical speeds Urn, where 
the phase speed takes on its minimum, and V,, the speed of gravity waves on shallow 
water, observed in Schulkes & Sneyd (1988) for an impulsively started line load is 
examined to see if these speeds are critical for two-dimensional loads. Unlike the steady 
part of the solution in Schulkes & Sneyd (1988), the solution is everywhere finite at the 
critical speed V,. However, at the load speed Urn, the solution is unbounded. At all load 
speeds the change in surface displacement is greatest near the load. A comparison with 
the experimental observations of Takizawa (1985) is made. Our calculations show a 
significant dependence of the amplitude of the ice displacement on the aspect ratio of 
the load. For wide loads the surface deflection has much more structure than does the 
surface displacement corresponding to loads of smaller aspect ratios. 

1. Introduction 
Some time ago it was observed that air cushion vehicles could be used to rupture ice 

by taking advantage of the fact that moving loads can generate waves in both ice and 
water (see Eyre 1977; Brochu 1977). Under certain conditions the disturbance is of 
sufficient amplitude to break the ice. Since in many areas winter ice cover forms an 
integral part of the transportation system by transforming bodies of water into roads 
and runways, it is important to determine the load levels that can be safely supported. 
In other areas the focus is on breaking the ice in order to facilitate water trafic. An 
effective method of ice breaking not only increases the period of time during which 
waterways can be navigated, but also provides a means of flood control. 

One of the first theoretical studies of the response of floating ice to moving loads was 
given in Greenhill (1887). More recently, a number of authors: Kheisin (1963, 1971), 

t Deceased. 



174 F. Milinazzo, M .  Shinbrot and N .  W. Evans 

Nevel (1970), Kerr (1983), Davys, Hosking & Sneyd (1985), Schulkes, Hosking & 
Sneyd (1987), and Schulkes & Sneyd (1988) have studied the effects of a moving load 
on floating ice. In these investigations, the ice sheet is treated as a thin plate of infinite 
extent supported below by water of uniform, finite depth and the load is assumed to 
move with constant speed. Kheisin (1963) examines the steady motion of a point and 
a line load. For a point load, he wrongly concludes that the deflection is bounded for 
all source speeds, while for a line load, he finds two critical speeds at which the ice 
deflection is unbounded. Nevel(l970) considers the steady motion of a load uniformly 
distributed over a disk and concludes that there exists a single critical speed at which 
the deflection is infinite. Although Nevel examines the dependence of this critical speed 
on problem data, his main concern is with the ice displacement and stresses at  the 
centre of the load as a function of source speed. Experimentally, a dependence of wave 
amplitude on load speed has been observed and measured (see for example Beltaos 
1980; Cohen & Clayton 1982; Takizawa 1985, 1988). Davys et al. (1985) g' ive a 
description of the far-field wave pattern caused by the steady motion of a point source. 
In addition, they compare their results to field measurements of the displacement and 
stresses at a point far from the load. In an attempt to explain the existence of critical 
speeds, Kheisin (1971) and Schulkes & Sneyd (1988) study the effect of an impulsively 
started, steadily moving line load. In particular, Schulkes & Sneyd (1988) show that 
there are two critical speeds, Urn and V,, for which the solution grows with time. The 
speed Urn is the minimum of the dispersion relation given in Greenhill (1887) and 
corresponds to the critical speed identified by Nevel(l970). In addition, they note that 
wavecrests produced by a two-dimensional load moving with speed Urn would be 
parallel to one another and perpendicular to the direction of motion. Consequently, 
energy can propagate only in the direction of motion. Hence, it is expected that Urn will 
remain a critical speed for two-dimensional sources. Moreover, Davys et al. (1985) 
point out that at this load speed, the minimum phase speed coincides with the group 
speed. Consequently, in the absence of dissipation, energy must accumulate beneath a 
uniformly moving load. The other critical speed U, = (gH)'/z corresponds to the speed 
of gravity waves propagating on shallow water of uniform depth. Here, Schulkes & 
Sneyd (1988) observe that energy can radiate away from the direction of travel and it 
is possible that U, is not a critical speed for two-dimensional sources. It is worth noting 
that the steady part of the solution given by Schulkes & Sneyd (1988) becomes 
unbounded as the load speed approaches these values. 

Much of our work was motivated by the interest of Transport Canada in the use of 
air cushion vehicles for breaking ice. Their experience shows that when ice rupture 
occurs, it does so behind and near the vehicle. Consequently, we are interested in the 
solution in the vicinity of the load where asymptotic estimates are not available. In 
what follows, we re-derive Nevel's solution but for a uniform, rectangular pressure 
distribution of length 2b and width 2a. The load is oriented so that the width is in the 
direction of travel. In using the Fourier transform to determine the steady waveform, 
we note that it is necessary to introduce time dependence in order to ensure that the 
solution obtained satisfies the correct radiation condition. Our numerical approxi- 
mation to the solution gives an accurate and detailed description of the ice deflection 
over the entire flow field for all load speeds not equal to Urn. The result corresponds to 
the steady part of the solution of Schulkes & Sneyd (1988) for a two-dimensional load. 
A simple analysis of the poles of the integrand of the Fourier integral shows that no 
steady solution is possible when the load speed is Urn. On the other hand, when the 
speed of the load is Ug, we see that the displacement of the waveform is finite. Hence, 
our calculations support the claim of Davys et al. (1985) and Schulkes & Sneyd (1988) 
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that Urn remains a critical speed for two-dimensional sources. However, we conclude 
that V,  is not a critical speed for two-dimensional loads in the sense that the steady 
deflection of the ice sheet is bounded at this load speed. The infinite deflection of the 
steady part of the solution of Schulkes & Sneyd (1988) is an artifact of the 
dimensionality of the source. Whether the solution of the initial value problem for a 
two-dimensional load moving with this speed grows with time remains an open 
question. In view of the work of Schulkes & Sneyd (1988), it is clear that for a given 
load speed there is a dependence of the deflection of the ice on the aspect ratio of the 
pressure distribution. We investigate this relationship and find a significant dependence, 
particularly for load speeds between Urn and V,. An asymptotic estimate of the ice 
deflection for large b is given. 

The paper is organized as follows. In 92 the problem is formulated as a Fourier 
integral. The details of the analysis of the singularities of the integrand are given in 
Appendix A. The results of an asymptotic analysis of the solution are given in 93. The 
details are left to Appendix B. In 94 a numerical method for approximating the 
solution is detailed. Finally, in 95  some numerical results are presented and a 
comparison with the experimental results of Takizawa (1985) is made. 

2. Formulation of the problem 
In formulating the problem, we take the (x, z)-plane to coincide with the ice sheet, 

the gravitational acceleration g is taken to be in the negative y-direction, and time is 
denoted by t. We assume an infinite, unbroken ice field that can be treated as a thin 
plate of constant thickness h and density p‘. Moreover, the water body is taken to be 
of constant density p and uniform depth H. We assume that the fluid motion beneath 
the ice is irrotational and incompressible and can be described by a velocity potential 
q5. In a frame of reference moving with the load speed U,  in the negative x-direction, 
the equation of motion (see Szilard 1974) for the vertical deflection 7 of a thin plate 
supported below by water and supporting a pressure distribution P is 

D y+- q-p+p’h -+U- ~ = - P ( x , z ) ,  -XI < X , Z < C O .  (2.1) (:: :;J (:t :xy 
For a uniform plate, the constant D is given in terms of Young’s modulus E and 
Poisson’s ratio for ice ~7 by the expression D = Eh3/[12(l -a2)]. The water pressure 
p(r, x, z )  is determined from the equations (see Whitham 1974) 

with 

and 

q5zz+q5yy+q5zz = 0 for - H  < y < 0, 

q5&, x, - H ,  z) = 0, q5&, x, 0, z) = -+ u- 3, 
(:t e) 

(:t lx) 
1 

P 
gq+-p+ -+ u- $(t ,x,O,z) = 0. 

The conditions given by (2.3) express the no-normal-flow condition at the bottom and 
the kinematic condition at the ice-water interface. The latter ensures that the vertical 
speed of the water at y = 0 and that of the ice sheet are the same. The Bernoulli 
condition (2.4) is a statement of force balance at the water-ice interface. Note that in 
using (2.4), we limit the discussion to linear disturbances. 
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In employing the Fourier transform to find the steady-state solution of (2.1)-(2.4), 
it is necessary to apply the correct radiation condition at infinity. To accomplish this, 
we resort to an artifice due to Lighthill (1957), see also Whitham (1974), and introduce 
an artificial time dependence. In (2. l), P is replaced by PS = est P where 6 > 0. This 
corresponds to a pressure source which was zero in the distant past and has grown to 
P at t = 0. The steady-state solution of (2.1)-(2.4) is obtained by finding a solution of 
(2.1)-(2.4) with P(x,  z )  = Ps and then letting 6-t 0. 

It is easy to see that the time dependence of the solution must be est, that is r(t ,x, 
z )  = est ?;is(,, z) ,  $(t, x, y ,  z )  = est &x,y, z), and p(t ,  x, z )  = estbs(x, z). In this notation, 
the steady-state solution of (2.1)-(2.4) is 9'. do, Po. Making these substitutions into 
(2.1b(2.4), taking the Fourier transform in both the x- and z-directions and using the 
definition 

together with corresponding definitions for 
P respectively, gives 

Y8, and 17, the transforms of @,pa, and 

(DK4+p'h(6-iUK1)2)XS-Ys = -17, (2.5) 

@ ; , - K ~ @ ' = O  for - H < y < O ,  (2.6) 

@;(K,, K,, - H )  = 0, @;(K,, K,, 0) = (6-iUK1) X', (2.7) 

(2.8) 

where K, = K ; + K ~ .  

Using (2.5)-(2.8), introducing the parameters ,U = p'/p, y = ,~uh/H, CI. = D / @ g H 4 )  = 
Eh3/(12pg(l -a2)H4), F2 = U2/gH, k = HK, k, = HK,, k, = HK, and redefining SH/U 
as 6, it is easy to see that, in a frame of reference moving with the load, the steady-state 
displacement is given by 

1 

P 
g X s  f - @+ (6- iuK1) @'(K1, K,, 0) = 0, 

(2.9) 
Similar expressions can be obtained for do and do.  

with Fourier transform 

2P0 H2sin [ak,/H] sin [bk,/H] 17=- 
77 k, k2 

(2.104 

(2.10b) 

Substituting 17 from (2.10) into (2.9), we obtain 

(2.1 1) 
For convenience, we have introduced the functions 

tanh k 1 
Q(k) = k [ 1 + yk tanh k] 
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and 
(k, +is)' c2 _ _  

k2 gH'  
9'(k,, k,) = F2 (2.12) 

Here, c is the phase speed of free waves. It can be derived from (2.1)-(2.4) by setting 
P = 0 and searching for solutions of the form ei(wt-K1s-K 2 ' ). The result is 

tanhk 1+ak4 
k l + y k t a n h k '  

(2.13) 

To evaluate (2.1 l), we treat it as an iterated integral in k, and k,. The k,-integral is 
evaluated using the method of residues. The resulting k,-integral can be approximated 
either numerically or asymptotically in the limit of large 1x1 or large b. 

At this point it should be stressed that S serves only to determine how the above 
artificial time dependence moves the real poles into the complex k,-plane, thus 
establishing whether the contour of integration is to be deformed into the upper or 
lower half-planet. Consequently, we can set S = 0 and identify the poles as the roots 
in the complex k,-plane of the equation 

9(kl ,  k,) = 9'(k,, k,) = 0, (2.14) 
for fixed F2 and ki. 

There are two sets of poles. The first set contains an infinite number of points which 
lie on the imaginary axis for all values of k,. These points can be determined by letting 
k = ih in (2.14) and re-arranging to obtain 

tanh ( l+ah4)  - 1 ( l+ah4)  (2.15) 

It is clear that the right-hand side of (2.15) is infinite at the points where coth = 

yh .  We label these points {&}j"=,. Since on the intervals [ j ~ , i ~ + ~ ] ,  (tanh/h) 
(1 + ah4)/( 1 - yh  tan A) is a monotone increasing function of A, it is easy to see that 
there is an infinite set of points {Aj};, where (2.15) is satisfied (see figure 1). It is clear 
that hj + 0 , j  2 2 for all values of F 2  and kg. However, it is important to note that for 
F2 > 1, A, + 0 for all real values of ki, while for F2 d 1, A, + 0 as k, + 0. In the 
k,-plane, the poles are located at the points & i (hj2 + ki) l iz ,  1 < j < co. 

The second set contains four points, one in each quadrant. Depending on the value 
of F, these four points can be real for a range of values of ki. They are also symmetric 
about the imaginary axis, thus we need only consider the two points with non-negative 
real part. The dependence of these points on F2 and ki can be seen by considering the 
intersection of the two curves 

(2.16) tanhk 1+ak4 = F2' k2 = Fz( 1 - 2 )  

(see figure 2). This condition, given by Davys et al. (1985), states that for a steady wave 
pattern, the component of the source velocity normal to any wavecrest must be equal 
to the phase speed of the crest, that is 

k l+yk tanhk  k2 

u2cos2p = c2. 

Here, 
C O S ~  = k,/k. 

is the angle between the load velocity and the wavenumber vector and 

f In many applications dissipation can be used to achieve the same purpose. 



178 F. Milinazzo, M .  Shinbrot and N .  W. Evans 

I I 

I I I 
I I A h  
I I 
I 

I 
I 

I 
I 

I I 

(b) 

F 

0 

I 4 ;  
I 
I I 
I I 
1 I 
I I 
I I 

I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I 

I 
I I i  

0 1 2 3 4 

FIGURE 1 .  A schematic showing the position of the imaginary roots of 9 ( k l ,  k,) = 0 for fixed values 
of k ,  : (a) the points of intersection of the curves cot h and yh;  (b)  the points of intersection of the 
curves [tan A( 1 + ah4)]/[h( 1 - yh  tan A)] and Fz( 1 + ki /h2) .  

Alz 

‘ k = k ,  
k 

FIGURE 2. The dispersion relation c2 /gH = [tanh k / k ]  [ 1 + ak4] / [  1 + yk  tanh k ] .  The intersection of 
the dashed curve with the dispersion curve shows the position of the real roots of 9 ( k 1 ,  k,)  = 0 for 
fixed k,. 
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The right-hand side of (2.16) is the dispersion curve given by (2.13). Denoting the 
minimum of the left-hand side of (2.16) by Fk ,  we can see that the nature of the 
two poles will differ for each of the cases: (a)  F < F,, (b) F = F,, (c)  F, < F < 1, ( d )  
F = 1 or (e)  F > 1. Figure 3(a)  illustrates the five different cases. Davys et al. (1985) 
use (2.16) and the wavenumber curve to infer the emergence of a 'shadow zone' for 
F2 > 1. The same conclusion can be drawn from figure 3 (a)  (v). For the corresponding 
values of F, figure 3(b) shows the paths followed by each of the four real poles as k ,  
varies from zero to infinity. Also shown in figure 3 (b) are the paths followed by the two 
poles -ti (A; + ki)l/' as functions of k,.  Here, it is important to notice that for F2 < 1, 
these two imaginary poles coalesce as k ,  + 0, while for F2 1, (A; + k;)l/' > 0 for all k,. 

Here, we describe the nature of the poles in the second set as functions of ki, and F2.  
In Appendix A we give arguments to support our claims. For F2 < Fk,  the poles are 
complex with non-zero imaginary part for all real values of ki .  For F2 = Fk the poles 
are real when ki = 0, but have non-zero imaginary part for all k; $: 0. The double root 
at ki = 0 leads to a singularity of the form l/lk,l in the k,-integral. Since this singularity 
is not integrable, the ice deflection is unbounded. The corresponding load speed is 
UfL.  In the case Fk < F2 < 1, the poles are real for k,  = 0. As ki increases the poles 
approach one another, coalesce and separate into a complex conjugate pair. At the 
value of k ,  where the complex conjugate pair coalesce and the double real pole appears, 
the k ,  integral has a square root singularity. Clearly this value of k ,  depends on 
F. When F2 = 1 and ki+O the real poles of smaller magnitude and the two poles 
'I i (A: + ki) l / ,  approach the origin. The residue from these poles is proportional to 
1/lk21112, and hence, the contribution from the poles to the k,-integral is finite. The 
corresponding load speed is U,. We conclude that Urn is a critical speed for two- 
dimensional distributed loads. At the speed U, the ice displacement is bounded. 

As indicated above, the role of 6 is to determine whether the contour of integration 
is deformed into the upper or lower half plane. By expanding 9'(k, ,k,)  about a real 
root for small 6, the sign of the imaginary part of the perturbation can be determined. 
The poles closest to the origin move into the lower half-plane, while those farthest from 
the origin move into the upper half-plane. As a consequence, we will see that the short 
capillary waves appear ahead of the load while the long gravity waves appear behind 
the load. These poles are denoted by A ,  B, -2, and - B .  The poles in the upper half- 
plane are labelled A ,  while those in the lower half-plane are labelled B. The points A 
and B are taken to be in the right-hand plane. The above two sets of points comprise 
all poles of the integrand of (2.11) for all values of the parameters F, a and y (see 
Hosking, Sneyd & Waugh 1988). 

Having identified the poles, it is straightforward to evaluate the k,-integral by the 
method of residues. We first write (2.11) as 

where 

(2.18) 

The evaluation of the integrals in (2.18) separates into three cases depending 
on whether x is behind, within or in front of the load. Behind the load x > a, hence 
x + a  > 0 and the integrals are evaluated by closing both contours in the lower half- 
plane. Within the load - a < x < a, hence x + a > 0 and x - a < 0 and consequently 
the contour for G$(k,) must be closed in the lower half-plane, while the contour for 



1x0 F. Milinazzo, M .  

tanh k (1 + ak4) 
k (1 + yk  tanh k)  / 

F2( 1- ki/k2) 
= F2 cos2 ,8 
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FIGURE 3 .  The location of the poles near the origin in the k,-plane. The locations of the real poles and 
the two poles f i(h: + ki)1/2 are given as functions of k ,  for different values of F. The sections of the 
paths which are on the real axis are displaced to  show the effect of the dependence on S. (a) The points 
of intersection of the curves [tanh k / k ] (  1 + ak4)/(  1 + yk tanh k )  and F2( 1 - k i / k 2 )  are given for different 
values of F. (b) The paths traced by the real poles and the two poles + ( h ~ + k i ) 1 ’ 2  as k: varies from 
zero to infinity are given for different values of F. 
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G!(k,) must be closed in the upper half-plane. In this case, there is also a contribution 
from the pole at the origin k ,  = 0. In front of the load x < -a ,  hence x f a  < 0 
and consequently both contours must be closed in the upper half-plane. 

The result for x > a is 

GS(k,) - G:(k,) = 

Q((B2+kZ)1’2) sin(aB/H) . xB 
-n[4 %,(B> k2) B H 

where Re(z) denotes the real part of z. In the other cases, similar expressions are 
obtained. 

For x + f a ,  it is clear that the series for G6,(k2) converge. For x = f a ,  F $: Fm, and 
fixed k ,  we note that Aj z ( j+$)n  asj+cc (see figure 1 b) and 

9:,(i (A,” + k;)li2,  k,) z 4 a ~ ~ ( j + $ ) ~ ,  

for largej. Consequently, the series converge for all values of x. 

3. Approximating the integral asymptotically 
The integral given by (2.17) is evaluated numerically. However, before describing the 

details of the method used, it is instructive to approximate (2.17) in the limit of large 
1x1 or large b. We concentrate on the z = 0 case. The details of the derivations can be 
found in Appendix B. Here we give only the final estimates. For F 2  < 1 and large b and 
or large 1x1, we have 

- a < x < a ;  (3.1b) 
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where A ,  = A(O), B, = B(0) and Im(z) denotes the imaginary part of z .  By taking x 
large with b fixed in (3.1 a, c), we obtain the far-field approximations 

Q(Bo) sin (aB, /H)  sin ( ( x / H )  Bo + n/4) 
%c1(Bo2 0) B, (HX B y 2  

2 

Q(A,)  sin (aA,/H) sin ( ( x / H )  A ,  + n/4) 
9,1(A070) ( H  1XA;ly 9 

x > a ;  

x < - a .  

(3.2) 

For F2 > 1 and b large, we have 

where A,  = h,(O). The estimates given by (3.1k(3.3) are not valid for F2 near one. 
The case F2 near 1 is of particular interest since we wish to show that at the load 

speed U, there is no resonance and the ice displacement remains bounded. Again, these 
estimates are valid for large b: 

The functions .(x) and W ( x )  are defined in Appendix B. It can be shown that the 
estimate given by (3.4) is O(1- F2)'l2 for F 2  < 1 and o(F2- 1)ll2 for P > 1. 
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4. The numerical approximation of the integral 
The integral given by (2.17) is approximated numerically using an adaptive Gaussian 

quadrature scheme. As was done in obtaining the asymptotic estimates of $ 3 ,  we use 
the symmetry in k, and write (2.17) in the form 

lom sin ruR(u) du, where R(k,) = GU(k,) - GY(k,). 

By breaking up [ O , o o )  into intervals of length x, we obtain 

sin ruR(u) du = 11 r sin u z  [ R ( F )  - R( '+('? ")1 du. (4.1) 

In evaluating the integrals in (4.1) the added complication of the square-root 
singularity at k,, , is handled by omitting the interval containing the singularity from 
the sum in (4.1) and evaluating its contribution to the integral separately. The number 
of terms in the sum was taken between 9 and 20. 

The integral in (4.1) was approximated by using adaptive Gaussian quadrature. In 
this scheme, the interval of integration is bisected and an n-point Gauss-Legendre rule 
is applied over the entire interval and each subinterval. The integral over a given 
interval [u,, u,] is accepted as accurate if the result of the n-point rule applied to [u,, u,] 
and the sum of the applications of the same rule to the intervals [u,, (u, + u,)/2] and 
[(u, + u,)/2, u,] differs by less than lops (u, - u,). If this condition is not met then [u,, u,] 
is bisected and the procedure is repeated on each of the subintervals. In our 
calculations, a four-point rule was used. The number of subdivisions was limited to 20; 
however, this limit was never attained. 

Although the above quadrature scheme can deal with the singularity at  k,, e, it does 
so by using a fine subdivision and, consequently, a large number of function 
evaluations, near this point. The efficiency of the numerical scheme was improved by 
treating the interval [ul, u,] containing k,, separately. This interval was partitioned into 

value of E was taken between 0.1 and 0.001. On the two intervals [u,, (1 -e )k2 , , ]  and 
[( 1 + E )  k,, e, u,] the adaptive quadrature rule was applied. On the two intervals [( 1 - E )  

k,, c ,  k,, ,] and [k,, , (1 + E )  k,, , I ,  we used a three-point weighted Gaussian quadrature 
rule with weight function 1/u1I2 (see Isaacson & Keller 1966). 

The most computationally intensive aspect of the calculation was the location of the 
poles hj,j = 1 , .  . . , and A and B as functions of k,. These were computed using 
Newton's method on 9 ( k l ,  k,), i.e. (2.14). For all values of k,, it is straightforward to 
obtain good starting estimates for the hi. Hence the poles on the imaginary axis can be 
computed efficiently. To locate the complex poles, we continue on k,. That is, values 
of A and B are computed for small k ,  and then used as estimates for successively larger 
values of k,. The iteration is carried out until the iterates differed by less than lop1, or 
the value of 19(kl,k2)l is less than 

The number of imaginary poles used in the series for GO@,) - G!(k,) is dependent on 
the value of x. Near x = k a the series converges slowly and consequently more poles 
are required to achieve a given level of accuracy. A relative error of lop6 is used to 
decide whether convergence has been achieved. Typically, the number of imaginary 
poles used is fewer than 10 when I ( x fa ) /HI  > 3 and as large as 100 at x++a. 

Varying the order of the Gauss-Legendre rule or the allowable depth of subdivisions 
made no significant difference in the results. 

four parts [UL, (1 - E W , , , I ,  [(I -E)k2,c,k2,cl, k , , , ( l  ++h,,l, and [(I + 4 k Z J ,  4. The 
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It should be noted that the integral in (2.17) can be evaluated using the fast-Fourier 
transform. For F2 < F i  this method gives good results and was used as a check. 
Unfortunately, for F2 > F i  the number of points required to obtain the necessary 
resolution makes the method unattractive. 

Our numerical scheme gives an accurate and detailed description of the ice deflection 
over the entire flow field for all load speeds not equal to Urn. Although other numerical 
methods (finite difference, finite element, etc.) could be used to approximate the 
solution of this problem, there are a number of advantages to our approach. First, the 
analysis of the singularity structure of the integrand leads to a great deal of insight into 
the physical nature of the solution. Error estimates are easily obtained and indeed are 
used to ensure accurate approximations to the solution. The usual problems associated 
with the infinite domain are handled by the Fourier transform. Furthermore, the 
solution need only be computed at points where solution values are required. Finally, 
for a given load speed, the poles of the integrand of the Fourier integral are 
independent of the field point where the solution is being evaluated. Hence, the 
computation can be carried out efficiently. 

5. Numerical results 
Here, we give a number of results which illustrate the nature of the solution. In all 

of our calculations the density of the ice was taken to be p’ = 900 kg m-3. 
To check the accuracy of the calculation, a comparison of the numerical 

approximation to the solution and the far-field approximation of the solution given by 
(3.2) is made. The parameters are those given by Davys et al. (1985) for McMurdo 
Sound, Antarctica. That study was undertaken to determine whether the ice of 
McMurdo Sound is capable of supporting fully loaded transport aircraft such as the 
C-130H Hercules. For our calculations the pressure supporting the aircraft was taken 
to be distributed uniformly over a rectangular base with a = 1.5 m and b = 2.5 mt.  
Figure 4 shows the results. As is to be expected the asymptotic approximation is very 
good for the elastic waves in front of the load. Behind the load the gravity waves are 
not as well approximated. A further check on the accuracy was made by comparing the 
numerical approximation to the solution to the large-b estimates given by (3.1), ( 3 . 3 )  
and (3.4). Figure 5 shows the results for F2 = 1. 

Figure 6 shows the deflection of the ice sheet in a cross-section parallel to the x-axis 
( z  = 1) for load speed and ice/water parameters given by Takizawa (1985). For 
comparison the experimental and numerical results are superposed. The agreement is 
not very good near the critical speed Urn. Unlike the observed profiles, the computed 
profiles are symmetric about the origin for subcritical speeds. The model used in this 
article precludes asymmetric solutions for subcritical speeds. The symmetric placement 
of the complex roots A and B for subcritical speeds forces the solutions to be symmetric 
about the centre of the load. The symmetry is broken by the appearance of the real 
roots at the critical speed. Several authors (Takizawa 1985; Schulkes et al. 1988) have 
speculated that the asymmetry is a viscoelastic effect. Hosking et al. (1988) use a two- 
parameter memory function to model the viscoelasticity of an ice sheet and reproduce 
the observed lag for a line load. The maximum deflections measured by Takizawa 
(1985) and the maximum computed deflections agree well. Apart from the lag between 
the central depression and the load, the shape of the computed ice deflection profiles 
falls into the five stages of development described by Takizawa (1985). 

t The pressure distribution on the ground which supports an aircraft is neither uniform nor 
rectangular. A uniform pressure distribution with these dimensions i s  taken only as an approximation. 
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FIGURE 5. A comparison of the numerical approximation to the solution with the large4 estimates. 
The parameters are a = 10, H = 10, P, = 1000 N m-2, E = 5 x lo9, CT = 1/3, p = lo3 kg m-3. F Z  = 1. 
For b = 250 the numerical approximation to the solution is given by the solid line, the asymptotic 
approximation is given by dashed line. For b = 500 the numerical approximation to the solution is 
given by the long dashes, the asymptotic approximation is given by the short dashes. 
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FIGURE 6. Ice deflection as a function of x for different load speeds for z = 1. The ice parameters are 
Po = 1023.6 N m-',H = 6.8 m,h = 0.175 m , E  = 5 x los N rn-',n = 1/3,p = 1026 kg m-3,u = 1.23 m 
and b = 0.468 m as given in Takizawa (1985). The solid curve shows the numerical results. The 
dashed curve shows the experimental observations of Takizawa (1985). 
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FIGURE 7. Depression depth as a function of load speed for z = 1 .  The parameters are Po = 
1023.6 N m-2, H = 6.8 m, h = 0.175 m, E = 5 x los N m-2, CT = 1/3, p = 1026 kg m-8, a = 1.23 m 
and b = 0.468 m as given in Takizawa (1985). The computed results are given by the solid curve, the 
experimental measurements of Takizawa (1985) are given by the circles. 
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FIGURE 8. The width of the maximum depression as a function of load speed. This width is defined 
as the width of the largest depression measured between two consecutive points where the deflection 
is zero. The circles are measurements taken from Takizawa (1985). The ice parameters are z = 1, 

p = 1026 kg m-3, a = 
~I 

Po = 1023.6 N m-2, H = 6.8 m, h = 0.175 m, E = 5 x 10' N m-2, u = 1/3, 
1.23 m and b = 0.468 m as given in Takizawa (1985). 
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FIGURE 9. The wavelength of the leading and trailing waves as a function of load speed. The ice 
parameters are z = 1, P, = 1023.6 N m-2, H = 6.8 m, h = 0.175 m, E = 5 x 10' N m-', u = 1/3, p = 
1026 kg m-3, a = 1.23 m and b = 0.468 m as given in Takizawa (1985). 
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FIGURE 10 (a, b). For caption see facing page. 
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FIGURE 10. Wave surface plots as a function of ( x , z )  for different load speeds. The ice parameters are 
Po = 1000 N m-2, H = 350 m, h = 2.5 m, E = 5 x lo9, (T = 1/3, p = lo3 kg m-3 as given in Davys 
et al. (1985). Here, a = 10 and b = 20. The speeds given in m s-l are: (a)  U = 30, (b) U = 37.5, ( c )  
U = 50, and ( d )  U = 60. The curve at the top right in (a)  shows the ice displacement along z = 0. 
The circle indicates the position of the load. 
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FIGURE 11. Wave height/height at U = 0 as a function of load speed. The parameters are z = 0, 
H = 6.8 m, h = 0.175 m, E = 5 x lo8, r = 1/3, p = 1026 kg m-3; Urn = 5.99 m s-l, U, = 8.17 m s-l. 
(a) Aspect ratio = 1, b = a;  (b) aspect ratio = 200, b = 200a. The wave height is taken to be the 
maximum displacement minus the minimum displacement. -, Aspect ratio = 1 ; --, aspect ratio = 
200. 

Figure 7 shows the variation of maximum negative deflection with load speed. 
Superimposed are the experimental measurements of Takizawa (1 985). The qualitative 
agreement between theory and experiment is good. As expected, there is a quantitative 
difference between the analytic and the experimental results near the critical speed. As 
the speed of the load increases to the critical value, the computed displacements 
increase more rapidly than the displacements measured by Takizawa (1985). However, 
for speeds greater than the critical speed the agreement is quite good. 

In figure 8, we compare the computed width of the maximum depression to that 
measured by Takizawa (1985). Depression width is defined as the distance between the 
two 7 = 0 points which bracket the deepest depression. For speeds greater than Urn 
the agreement is good. For speeds less than Urn the computed results overestimate 
the measured widths. The large computed widths near U = 8 are an indication of the 
difficulty in determining the depression width as the amplitude of a wavecrest decreases 
to zero. 

In figure 9, we compare the computed wavelengths of both the elastic and the gravity 
waves at different load speeds to those measured by Takizawa (1985). The computed 
wavelengths of the leading elastic waves are in good agreement with the measured 
wavelengths. Near the critical speed the agreement between the computed and 
measured wavelengths is very good. Schulkes et al. (1988) explain the discrepancy at 
larger wavelengths as a time-dependent effect, where insufficient time has elapsed for 
a complete wavelength to be propagated. Also shown for comparison is twice the width 
of the depression immediately behind and near the load. 

Figure 4 shows the ice deflection at four supercritical speeds for the McMurdo 
Sound data (for these parameters Urn = 22.5 m s-l). Figure 10 illustrates the ice surface 
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FIGURE 12. Wave height/height at U = 0 as a function of aspect ratio for different wave speeds. 
The parameters are z = 0, H = 6.8 m, h = 0.175 m, E = 5 x lo8, CF = 1/3, p = 1026 kg m-3. 

for the same load speeds. The surface plots show very clearly the development of the 
quiescent zone and the cusps behind the load. These figures show that the ice deflection 
changes most rapidly behind the load. 

The analysis of $ 3  suggests that the amplitude of the steady deflection of an ice sheet 
increases as b / H  when the load speed is near (gH)lI2. In order to investigate the effect 
of aspect ratio of the load on ice displacement, we computed ice deflection as a function 
of load speed for two different loads, one with an aspect ratio of b/a  = 1, the other with 
an aspect ratio of 200. All other parameters are taken as in Takizawa (1985). Figure 
11 provides a summary of the results. It is clear that the influence of aspect ratio is 
significant but limited to speeds between U, and U,. Figure 12 shows the dependence 
of ice deflection normalized on the deflection induced by the same load at zero speed 
for a number of load speeds. It should be noted that for load speeds near the critical 
speed the amplification of the deflection over the deflection of a stationary load 
increases most rapidly as the aspect ratio increases from 1 to 20. Figure 13 shows the 
surface plot of the ice deflection for a load of dimension a = 10 m by b = 200 m for the 
parameters of McMurdo Sound. This figure should be compared to figure lO(a). For 
wide loads the surface deflection has much more structure than does the surface 
displacement corresponding to loads of smaller aspect ratios. 

6. Conclusions 
In this article, we have investigated the steady response of a uniform ice sheet of 

infinite extent which is supported by water of constant depth. The deflection is assumed 
to be produced by the steady motion of a uniform, rectangular pressure distribution. 
The solution is expressed as a two-dimensional Fourier integral. An analysis of the 
poles of the integrand is used to obtain asymptotic estimates for the ice deflection in 
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x=3500 m \ 
Direction of motion 

FIGURE 13. Wave surface plot as a function of (x, z )  for different load speeds with b large. The ice 
parameters are Po = 1000 N m-2, H = 350 m, h = 2.5 m, E = 5 x lo9, = 1/3, p = lo3 kg m-3 as 
given in Davys et al. (1985). Here, a = 10, b = 200, and U = 30 m s-l. The curve at the top right 
shows the ice displacement along z = 0. The circle indicates the position of the load. 

the limit of large 1x1 or large b. In addition, the integral is approximated numerically 
using the method of residues together with a simple adaptive quadrature scheme. Using 
this numerical scheme the problem of an infinite computational domain is eliminated. 
Moreover, the solution need only be computed where solution values are required. 

Our analysis shows that no steady-state solution is possible when the load speed 
equals the minimum speed of the elastic waves of the ice. This result supports the 
analysis given by Davys et al. (1985). However, a steady solution does exist when load 
speed equals (gH)'''. However, as is the case for the line load (Schulkes & Sneyd 1988), 
it is possible that such steady solutions are not realizable since solutions of the initial 
value problem may grow with time. 

Our calculations suggest a strong dependence of the amplitude of the ice deflection 
on the aspect ratio of the load when the load speed is between Urn and U,. 

The results of our calculations are in good agreement with the experimental 
observations of Takizawa (1985). 
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Appendix A 
In this appendix, we analyse the form of the singularities which occur in the 

integrand of (2.17). We stress that the position of each pole in the k,-integral depends 
on the value of k,. This dependency is given implicitly by (2.14). We let k, ,e  and 
be the values of k ,  and k,, respectively, at which the real poles coalesce and suppose 
that =i= 0. Since two real poles coalesce then separate as a complex-conjugate pair, 
it is necessary that k,, ,) = 9k,(kl,c, k,, e)  = 0. Expanding 9 ( k l ,  k,) about the 
critical point and keeping terms up to the second order, we obtain 

Solving for k ,  in terms of k ,  and keeping only the lowest-order term results in the 
expressions 

where all derivatives are evaluated at ( I C , , ~ ,  k2 ,J  and k,, L(k,) represent the two branches 
of the curve given by (2.14). It is easy to check that the sign of the partials of 9, 
evaluated at ( I C , , ~ ,  k,, c) ,  are such that the argument of the square root is positive for 
lkz[ < [k , ,J  and negative otherwise. In this notation, the integrand of (2.11) takes the 
form 

Here, 2 is used to denote the part of the integrand of (2.11) which is regular at the poles 
k; = k;, *(k,). Using the approximation given by (A 2) in the residue of (A 3) at 
k, ,  *(k,), it is easy to see that for values of k, close to k2,e ,  the residue is proportional 
to 

Hence for 
critical speed Urn, k2,c  = 0, gkZ = 9k1,k, = 0 and 9kl,k19kz,k2 > 0. It follows that 

=k 0, the singularity in the k,-integral at k,  = k, ,e  is integrable. At the 

1/2 k k1(k2) = '1, * ( k 2 )  = '1,e * i(9kz, k, 9kl, k,) 1 21. 

The singularity is of the form l/Ik,l and the integral is no longer finite. 
It remains to consider what happens for small k; when I; = 1. In this case there are 

four roots near the origin of the /?,-plane. Since k is small, we can expand tanhk about 
zero in (3.1). To lowest order in k,, we find that the roots of (2.14) are 
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Using this estimate in Q(k)/9(kl, k,) it is easy to show that, to lowest order, the residue 
from these poles is proportional to 

1 
( $ + Y ) ~ / ~  lk21’/2’ 

Consequently, the contribution of these four poles to the k,-integral is finite. 

Appendix B 
In this Appendix we outline the details of the derivations of the estimates given in 

8 3 to (2.17) in the limit of large 1x1 or large b. Only the case z = 0 is considered. For 
large b and or large 1x1, the major contribution to the integral in (2.17) comes from an 
interval about k,  = 0. Since the poles B and - B  coalesce at F2 = 1, it is necessary to 
consider the cases F2 < 1 and F2 > 1 separately. For F2 < 1,  the exponential terms in 
(2.19) do not contribute to the leading term. Consequently, for x > a, we have the 
approximation 

dk27 (B l) 
Q((B(k,), + k;)’/,) sin bk2/H sin ( x / H )  B(k,) 

9kI(W2)? k,) k2 

where the dependence of B on k, has been shown explicitly. An estimate for (B 1) is 
obtained by expanding B(k,) about k, = 0 and retaining only second order terms. The 
leading term of the approximation is given by 

sin 
bk2’Hexp [ - i x/H(Bo +:Bi ki)] dk, . 1 i o  B, Im 4p0 Q(B,) sin 

@9,JB,, 0) B, 
(B 2) 

On evaluating the integral in (B 2), we arrive at the estimate given by (3.1 a). To obtain 
(3.1 b, c) similar calculations can be carried out for x < - a  and -a < x < a by using 
(2.17) together with (2.18) written for the corresponding interval in x .  

The solution for a line load can be recovered by taking b 9 xB: and b % IxAJ in 
(3.1 a) and (3.1 c) respectively to obtain 

For F2 > 1 ,  similar calculations to those used to arrive at (3.1) give (3.3). Clearly, the 
estimates given by (3.1) and (3.3) are not valid for F2 near one. 

For F2 x 1 and large b, the major contribution to the ice displacement comes from 
the real poles A and B and the exponential terms in (h:+k;)1/2 for k, small. 
Consequently, it is necessary to obtain estimates for B and (A; + k:)lI2 for small k, and 
small 1-F2. These are obtained by approximating tanhk in (2.14) for small k and 
solving the resulting quadratic for k2. For F2 = 1, the leading term in the approximation 
for k, is given by (A 4). 

For convenience, we write (2.17) as 

9 ( k 2 ;  F2)  dk,. ,., 2p, Sm sin bk2/H 
“Pg 0 k2 
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The dependence of A ,  B and A, on F2 is emphasized by its appearance as an argument 
of 9. To approximate (B 4) as F2 4 1 with large, fixed b, we write 

(B 5) 
For -a < x < a, we have 

Q ( ( B 2 + k ; ) " 2 ) ~ ~ ~ ( ( x + a ) / H B ) + 2  Q ( ( A z + k ~ ) ' / 2 ) c o s ( ( x - a ) / H A )  

B 9k1(B7 k 2 )  A 9kl(A, k Z )  

9 ( k 2 ;  F;") = 2 

1 
1 + akt 

exp [ + (A; + k;)l/, (x - a ) / H ]  + exp [ - (A: + k;)l/,  (x  + a ) / H ]  
gk1(i (A: + k;)'/', k,) 

1 -___- 
(A; + ki)l / ,  

For F2 < 1, we find that 

1 +45a 2Q(A,)cos((x-a)/HA0) -~ 1 [ 3 ( 5 z ) p  + (55),] 
45(f+Y)2+ 9k1(AO, 0) A ,  W i  + Y )  

+(:)"' a / H  (A)'" 4 2  a b F2(1-F2)1/2 
(f + y)3/4 H x H H  (f+y) 

u(( 1 + u4)1/2 - 1)1/2 - (1 + u4)1'2 

(1 + U4)'iZ 

% --[ Po 1 + 45a 2Q(A,) cos ((x - a ) / N  A,) - ___ 1 [ 3( F), + (55)'] 
Pg 45(i+Y)2+ 9kl(AO? O) fKi + Y )  

(B 6 )  

For F2 > 1, 

1 +45a 2Q(A,)cos((~-a)/HA,)  -+3(5+J+(5+J] 1 

45(i + + 9k,(A~7 O) A ,  %+Y) 

+(i)'/2 a / H  (A)'/' 4 2  a b F2(1 -F2)ll2 
(i + y)3/4 H n: H H  ( i + y )  

x - a  

u(( 1 + u4)'/2 + l)l/Z - (1 + u4)'/2 

(1 + u4)'/2 

1 +45a ~Q(A,Jcos((x-u) /HA,)  I 
- ~ [ ( 5 5 ) '  + ( K ) 2 ]  

+ 9kl(A0, O) A,  8(f + Y )  

(:)'/' a / H  ( b))'"] + -  (f+y)3/4 77 . (B 7 )  

For x > a, we have 

Q((B2 + k;)'I2) sin ( a / H )  B x 
sin - B 

B H 
9 ( k , ; F 2 )  = -4 

9k,(B, k 2 )  

exp [ + (A; + k;)liz (x - u ) / H ]  - exp [ - (A; + ki)1/2 ( x  + a) /H]  
gk,(i (A: + k:)ll2, k,) 

+ i  
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The contribution to the leading term of the first integral of (B 5 )  comes from the poles 
B(k,) and Al(k2). The result is 

where 

and 

sin xw dw 

Here, S(x)  and C(x)  are the Fresnel integrals (see Abramowitz & Stegun 1964). 
Although we have not been able to express q ( x )  in terms of elementary functions, it is 
relatively easy to compute for small values of x. For large values of x, GY(x) can be 
approximated in terms of Fresnel integrals. 

A similar calculation can be carried out for x < - a  where the only contribution 
comes from the pole A(k,). The result is 

(B 9) 
Under the conditions where (B 8) and (B 9) are valid, it can be shown that the second 
integral in (B 5)  is O(1- F2)Il2 for F2 < 1 and o(F2 - I)’/’ for F2 > 1. 
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